Making neutral molecular receptors for anion binding in water
吴欣 教授
厦门大学药学院
时间:2023年3月15日(星期三)10:00
地点:思明校区卢嘉锡楼202报告厅(现场报告)
翔安校区能源材料大楼3号楼2层报告厅(同步转播)
漳州校区生化主楼307教室(同步转播)
厦门大学谱学分析与仪器教育部重点实验室
2023年3月10日
报告人简介:
吴欣,2011年毕业于厦门大学化学系,2016年毕业于南安普顿大学(导师:Philip Gale教授和江云宝教授)。2017-2021年于悉尼大学Philip Gale教授课题组任博士后。2022-2023年于昆士兰大学担任研究员。2022年获得海外高层次青年人才称号并于2023年加入厦门大学药学院任药物化学方向教授。曾获2016年分子传感器&分子逻辑门会议AP de Silva 青年学者奖、2016年英国皇家化学会大环超分子化学组博士论文奖,承担2022年澳大利亚研究理事会优秀青年基金(ARC DECRA)。研究兴趣包括超分子化学、分子识别、大环化学、超分子聚合物、药物化学和吸附材料等。
报告摘要:
Naturally occurring transmembrane proteins such as the sulfate binding proteins, phosphate binding proteins and ClC channels/transporters achieve high-to-modest affinity anion binding in water through multiple hydrogen bonding interactions from polar amino acid residues to the encapsulated anion within a hydrophobic protein microenvironment. In many of those biological systems, the bound anion is stabilised solely by dipole interactions (hydrogen bonds) without forming ion pairs with counterions in proximity.
Creating synthetic systems to mimic the function of anion binding proteins is a key academic challenge in supramolecular chemistry. In water, most biologically relevant anions such as chloride, sulfate, phosphates and carboxylates are strongly hydrated. This imposes a large enthalpic penalty for a synthetic receptor to (partially) remove the anion hydration shell and bind an anion. A further energetic cost is incurred due to the high dielectric constant of water diminishing non-covalent interactions provided by a synthetic receptor. Unlike nature, the majority of synthetic anion receptors functioning in water are multiply charged metal complexes or polyammonium organic molecules, where strong Coulombic attractions underpin the success of these systems.
In this talk, I will present our recent examples where anion binding in water or aqueous-organic mixed solvents was achieved by charge-neutral molecular receptors synthesised in 1-3 steps.
References:
[1] X. Wu, P. Wang, P. Turner, W. Lewis, O. Catal, D. S. Thomas, P. A. Gale*, Tetraurea macrocycles: aggregation-driven binding of chloride in aqueous solutions. Chem 2019, 5, 1210–1222.
[2] X. Wu, J. R. Small, A. Cataldo, A. M. Withecombe, P. Turner, P. A. Gale*, Voltage-switchable HCl transport enabled by lipid headgroup-transporter interactions. Angew. Chem.Int. Ed., 2019, 58, 15142–15147.
[3] X. Wu, P. Wang, W. Lewis, Y. B. Jiang, P. A. Gale*, Measuring anion binding at biomembrane interfaces. Nat. Commun. 2022, 13, 4623.
[4] X. Wu*, J. K. Clegg, [2.2.2]Urea cryptand: an easily accessible neutral organic cage for anion binding in water, ChemRxiv 2022, DOI: 10.26434/chemrxiv-2022-vc1j9.